こんにちは、リブセンスでデータサイエンティストをしている北原です。今回はアウトカムが2値のHeterogeneous Treatment Effects(HTE)に関する簡単な検証実験を扱います。コードはRです。やりたいことはパラメトリックなモデルのみを使ってHTEを推定すること…
こんにちは、リブセンスでデータサイエンティストをしている北原です。今回はStanを使ったレコメンデーション用FM(Factorization Machines)を扱います。 FMはシンプルなモデルなのでStanで簡単に実装することができます。しかし、レコメンデーションで使う場…
こんにちは、リブセンスでデータサイエンティストをしている北原です。今回は小ネタで打ち切り・切断データの回帰モデルを扱います。弊社で扱っているデータの中には打ち切りデータになっているものがあり、そのようなデータから階層ベイズモデルを作ること…
こんにちは、リブセンスでデータサイエンティストをしている北原です。今回は転職ドラフトの年収非公開施策のデータ分析の一つとして行った、施策が提示年収に与えた平均処置効果推定の紹介です。今回の記事は過去に行った分析結果を因果推論手法で再確認す…
こんにちは、リブセンスでデータサイエンティストをしている北原です。今回は平均処置効果の推定方法について紹介します。より具体的にはマッチングや重み付けといった共変量のバランシングを利用してバイアスの小さい推定をする方法を使い、複数得られた推…
こんにちは、リブセンスでデータサイエンティストをしている北原です。今回はCovariate Balancing Propensity Score(CBPS)の紹介をします。また、Rのmomentfitパッケージを利用したCBPSの実装も扱います。 CBPSは共変量のバランスも考慮して傾向スコアを算出…
こんにちは、リブセンスでデータサイエンティストをしている北原です。今回はRのmomentfitパッケージを使ってGeneralized Method of Moments(GMM、一般化モーメント法)を実行する方法について紹介します。 GMMはパラメータ推定法の一つで、主に計量経済学で…
こんにちは、リブセンスでデータサイエンティストをしている北原です。今回は以前の記事の続きで転職ドラフトの年収非公開施策のデータ分析について紹介します。階層ベイズを利用した推定を行います。 以前の記事では提示年収のばらつきをユーザー別標準偏差…
こんにちは、リブセンスでデータサイエンティストをしている北原です。今回は2020年8月に開催された転職ドラフトの年収非公開施策の分析結果について紹介します。今回は一般向けの内容で、分析手法は集計のみを使いデータ分析の専門用語はほとんど使わずに説…
前回に続きコンテキストを扱えるFactorization Machines(FM)をモデルとした、Bayesian Personalized Ranking(BPR)(以下ではBPR-FMと略)を紹介します。今回はBPR-FMのモデルパラメータ推定の実装の話をします。実装にはJuliaを使います。モデルやアルゴリズム…
今回から3回にわたって暗黙的評価データを使ったコンテキスト対応レコメンデーションの紹介をしようと思います。具体的には、コンテキストを扱えるFactorization Machines(FM)をモデルとした、Bayesian Personalized Ranking(BPR)を紹介します。今回はアル…
こんにちは、リブセンスで分析や機械学習関係の仕事をしている北原です。 今回は求職者に向けたリブセンスの機械学習業務の紹介です。 求職者に業務内容を理解してもらうのが目的の記事になっています。 各事業部で進められている機械学習プロジェクトなども…
テクノロジカルマーケティング部 データマーケティンググループにてUXリサーチャーをしている佐々木と申します。普段は、UXデザイン(以下、UXDと略記)に関するプロジェクトを事業部横断で支援する業務についております。 これまで前編として、"UXデザイン…
データプラットフォームグループの松原です。 弊社各サービスのデータ分析基盤であるLivesense Analytics(以降LA)の開発、運用を行っています。 LAではデータウェアハウスとしてRedshiftを運用しており、社内から比較的自由に利用できる様にしています。 R…