LIVESENSE Data Analytics Blog

リブセンスのデータ分析、機械学習、分析基盤に関する取り組みをご紹介するブログです。

因果推論

ベイズ推定を利用したT-Learnerの実装と簡易検証

こんにちは、リブセンスでデータサイエンティストをしている北原です。今回も前回に引き続きアウトカムが2値のHeterogeneous Treatment Effects(HTE)に関する簡単な検証実験を扱います。ベイズを利用してT-Learnerに事前知識を組み込むことで推定が改善され…

Metalearnerを使った2値アウトカムHeterogeneous treatment effectsの簡易検証

こんにちは、リブセンスでデータサイエンティストをしている北原です。今回はアウトカムが2値のHeterogeneous Treatment Effects(HTE)に関する簡単な検証実験を扱います。コードはRです。やりたいことはパラメトリックなモデルのみを使ってHTEを推定すること…

転職ドラフトのデータ分析 - 年収非公開施策による提示年収の平均処置効果

こんにちは、リブセンスでデータサイエンティストをしている北原です。今回は転職ドラフトの年収非公開施策のデータ分析の一つとして行った、施策が提示年収に与えた平均処置効果推定の紹介です。今回の記事は過去に行った分析結果を因果推論手法で再確認す…

WebサービスのA/Bテスト代替手段としての観察データからの平均処置効果推定

こんにちは、リブセンスでデータサイエンティストをしている北原です。今回は平均処置効果の推定方法について紹介します。より具体的にはマッチングや重み付けといった共変量のバランシングを利用してバイアスの小さい推定をする方法を使い、複数得られた推…

Covariate Balancing Propensity Scoreの実装

こんにちは、リブセンスでデータサイエンティストをしている北原です。今回はCovariate Balancing Propensity Score(CBPS)の紹介をします。また、Rのmomentfitパッケージを利用したCBPSの実装も扱います。 CBPSは共変量のバランスも考慮して傾向スコアを算出…